
S_EVERZ Paramétrer et démarrer temporisation sous forme de retard à la montée

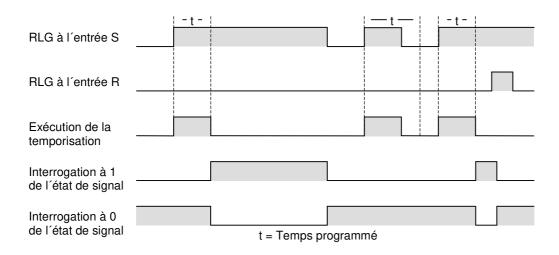
Représentation

Paramètre Anglaise	Paramètre Allemande	<u>Type de</u> données	Zone de mémoire	<u>Description</u>
T n°	T no	TIMER	Т	Numéro d'identification de la temporisation. La plage dépend de la CPU.
S	S	BOOL	E, A, M, L, D	Entrée de démarrage
TV	TW	S5TIME	E, A, M, L, D	Valeur de temps prédéfinie
R	R	BOOL	E, A, M, L, D	Entrée de remise à zéro
BI	DUAL	WORD	E, A, M, L, D	Valeur de temps restante (format binaire)
BCD	DEZ	WORD	E, A, M, L, D	Valeur de temps restante (format DCB)
Q	Q	BOOL	E, A, M, L, D	Etat de la temporisation

Description de l'opération

S EVERZ (Paramétrer et démarrer temporisation sous forme de retard à la montée)

Cette opération démarre la temporisation précisée en cas de front montant à l'entrée de démarrage S. Un changement d'état de signal est toujours nécessaire pour activer une temporisation. La valeur de temps indiquée à l'entrée TW s'écoule tant que l'état de signal à l'entrée S est à 1. L'état de signal à la sortie Q égale 1 lorsque la temporisation s'est exécutée sans erreur et que l'état de signal à l'entrée S est toujours 1. La temporisation s'arrête si l'état de signal à l'entrée S passe de 1 à 0 alors que la temporisation s'exécute. Dans ce cas, l'état de signal à la sortie Q est 0.


En cas de passage de 0 à 1 à l'entrée de remise à zéro R pendant que la temporisation s'exécute, cette dernière est remise à zéro. La valeur de temps en cours et la base de temps sont alors également mises à 0. L'état de signal à la sortie Q égale alors 0. La temporisation est également remise à zéro si l'état de signal égale 1 à l'entrée R alors que la temporisation ne s'exécute pas et que le RLG à l'entrée S est égal à 1.

La valeur de temps en cours peut être lue en format binaire à la sortie DUAL et en format décimal codé binaire à la sortie DEZ. La valeur de temps en cours correspond à la valeur initiale en TW moins la valeur de temps écoulée depuis le démarrage de la temporisation.

Voir aussi Adresse d'une temporisation en mémoire et composants d'une temporisation.

Chronogramme

Propriétés de la temporisation sous forme de retard à la montée

Mot d'état

Exemple

La temporisation T5 est démarrée si l'état de signal passe de 0 à 1 à l'entrée E 0.0 (front montant du RLG). Si le temps de deux secondes (2 s) indiqué expire et que l'état de signal à l'entrée E 0.0 égale toujours 1, l'état de signal à la sortie A 4.0 est 1. Si l'état de signal en E 0.0 passe de 1 à 0, la temporisation est arrêtée et A 4.0 est à 0. Si l'état de signal à l'entrée E 0.1 passe de 0 à 1, la temporisation est remise à zéro qu'elle soit en cours d'exécution ou non.