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Abstract

This paper deals with the blind identification of a state-space model (A,B,C) characterizing the Navier-Stokes

equation in an observed area and the localization of the source which emmits in this area. This identification is
performed on the only basis of measurements provided by a distributed sensors network located in the monitored area.
In order to solve the problem, subspace-based blind identification method joined to transport delays approximation
is used to perform the evolution and control matrices (A and B) estimation problem. Furthermore, the state-space
formulation brings a priori information which permits to reduce the number of undeterminated parameters in this
subspace method. So, the aim of this contribution is to propose an identification and localization method based on
a subspace approach combinated with a priori information about the form of the state-space matrices. Numerical
simulations demonstrate the performance of the method in the case of a gas propagation.
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1 Introduction

Thanks to the increasing number of supervision networks, the pollution is became better and better quantified, especially
around the danger zones. Consequently the localization of source of pollution is a problem frequently posed. Let be a
rectangular area monitored by a sensors network. Each of the sensor provides the concentration of a chemical component
in the atmosphere. Let’s suppose that the measurements show a huge variation which is due to an emission discontinuity
from a known or unknown source. The problem is then to localize the source and to identify the propagation system
between the source and the sensors only with the observed signals, and without any information on this source. So, blind
identification methods are used, and especially the subspace one which permits to estimate the impulse responses of the
source-sensors channels. The principle of this method is adapted to our problem thanks to a priori information brought
by the state-space model characterizing the dispersion phenomenon. Indeed, the discretization of the Navier-Stokes

equation leads to particular shapes of the matrices A and B. This information combinated with the subspace method
reduces the number of undefined parameters. A term based on the intercorrelation of the observed signals is added to
the criterion of the subspace method in order to perform the right localization.
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2 Scattering model : expression and discretization

The chosen model is Navier-Stokes differential equation, limited to the bidimensionnal case. This equation takes into
account the two essential phenomena for the dispersion of a gas in the atmosphere. The first phenomenon is the advection
depending on the wind, and the second is the diffusion depending on coefficients characterizing the turbulences, the
sunniness and the temperature. The bidimensionnal approximation of the real 3D model can be realistic if the height
difference between source and sensors is not significant with respect to the size of the observed area. The general
equation is :
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where υ(x, y, t) is the gas concentration. To simplify the general model, some hypotheses are currently used :

• No chemical recombinations ⇒ R(t) = 0.

• The diffusion coefficients Kx and Ky are supposed temporally and spatially invariant.

• the wind vector
−→
U is completly defined and constant during the data acquisition.

In the real case, these hypotheses are a bit restrictive. Indeed, the model described has a good behaviour if atmospheric
conditions (wind, temperature, ...) are constant or subject to low variations. So observation time can’t exceed a few
hours. The final equation is then :
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The numerical form of (2) is provided by the finite difference method called ”upwind” [1] which takes into account
the wind direction in the estimation of the first derivative :
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Υn
i,j is now the discrete form at position (i, j) and time n of the continuous concentration υ(x, y, t). h, k are the spatial

steps along x and y, and p is the sample period. The source being ponctual, the contribution of the source term is
null everywhere except for the source position (xs, ys). After this step of discretization, the model is reformulated in a
state-space form.

3 State-space representation

Without the source term, the equation (3) can be reformulated as Υn+1 = AΥn. If we define a networking of size
((l/h)× (L/k)) (where (l × L) is the size of the area), then the state vector Υn is built by stacking the (L/k) rows of
the networking one after the other. This implies that Υn has a ((l/h)× (L/k))× 1 size. This state vector coding leads
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to a block-tridiagonal form of the matrix A :

A =
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where each block has the form :
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The model stability is guaranteed if the eigenvalues of A are into the unit norm circle. This is possible if the relation
(5) given by the Gershgorin-Hadamard theorem [2] is verified.

(5) m1 +m2 +m3 +m4 +m5 6 1

By integrating the source term, we obtain a complete state-space model :

(6)

{

Υn+1 = AΥn +m6BSn + wn

yn = CΥn + bn

The term m6S
n represents the entry of the system, wn models the background concentration, yn is the measurement

vector provided by the sensor network, and bn is a white noise. So the estimation of this model leads to a characterization
of the dispersion from a spatial and temporal point of view. Indeed, the matrix A is completly defined thanks to the mq

parameters which depend on the dispersion conditions, and the matrix B informs on the source position. The coding
of the matrices B and C is the same than the state vector one. So, the matrix B is a full zero ((l/h) × (L/k)) × 1
matrix except for the element corresponding to the source position which is set to 1 (i.e the (((ys/k− 1)L/k)+ xs/h)th
element). The matrix C uses the same principle for the sensors and is a nc × ((l/h) × (L/k)) (nc is the number of
sensors).

B =













0
...
0
1
0
...
0













C =

(

0 ··· 0 1 0 ··· 0
...

...
0 1 0 ··· ··· ··· 0

)

So, the blind identification amounts to estimate the mq (1 6 q 6 5) parameters defining the matrix A for the propagation
system and the matrix B for source position. This is possible thanks to the subspace method.

4 Blind identification method

The principle of the subspace method presented by Tong [5] and modified by Moulines [4] is to use the orthogonality
property between the signal and noise subspaces in order to identify the impulse responses of channels linking the source
to each sensor (Figure 1). This method only takes into account the sensor signals and their second order statistics. Let
HN be the N × (N +M) filtering matrix (M is the order of the filter) associated with the filter hn

i :
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Figure 1: Channels between source and sensors

then, we can write the following expression in the multisensor case :
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(7)

Y n = HNSn + Bn

with Y n = [yn, · · · , yn−N+1]T , Bn = [bn, · · · , bn−N+1]T . Under a few identifiability conditions [4] and if the source is
statistically independant of the noise, then the autocorrelation matrix of the observed signals is :

(8) Ry = E[Y nY nT ] = HNRsH
T
N +Rb

If we assume that Rb = σ2I (white noise with variance σ2), then the EVD of Ry gives, after a classification of the
eigenvalues and of their associated eigenvetors in a decreasing order, the subspace decomposition :

(9) Ry = E[Y nY nT ] = Udiag(λ0, λ1, · · · , λM+N−1)U
H + σ2V IV H

This decomposition gives the signal subspace U and the noise subspace V (the order M of the largest filter is given by
the size of U). The signal subspace is the same than the one generated by the columns of HN , so the orthogonality
property is also available between the columns of HN and the noise subspace. On this basis, a criterion has been defined
to identify the channels parameters :

(10) J(H) = HTQH

with Q =
∑ncN−M−N−1

i=0 ViV
T
i (Vi is the filtering matrix associated with the vector Vi), and H = [HT

1 , · · · , H
T
nc
]T . The

minimisation is computed under the constraint |H | = 1.

5 Localization

If we consider the problem as just before, we must estimate ncM parameters to identify the impulse response. By
integrating the a priori information brought by the state-space matrices, we can reduce the number of parameters to
two (for a given source position). Indeed, in the equation (2), the only undefined parameters are Kx and Ky. We shown
that A = f(mq) (6) and mq = g(Kx,Ky) (4), so A depends on Kx and Ky. By the relationship (11) between the impulse
response and the state-space matrices

(11) Hi = [C(i)B, · · · , C(i)AkB, · · · , C(i)AM−1B]T

(with C(i) the row i of the matrix C), it’s easy to show that H depends on B,Kx,Ky. For a given source position,
H = F(Kx,Ky). It’s important to note that the minimisation of J(H(B,Kx,Ky)) is no more performed with the



Subspace Method for Blind Characterization of Atmospheric Scattering Model 5

constraint |H | = 1, but with the parametrized form of H (11). Nevertheless, H is estimated up to transport delays for
each impulse response. So, propagation delays estimation is needed to perform the source localization.

Let τHi be the transport delay of the impulse response Hi (i.e Hi(0) = · · · = Hi(τHi ) = 0). By the second order
statistics, transport delay can’t be estimated. At most, it is only possible to approximate the time delay (τHi − τHj ).
When sensors layout permits to ensure the channels disparity (no common zeros after the transport delay), the time
delay φij between two sensors measurements depend on the time delay τHi − τHj and on the filters phase difference.
Assuming that the source signal frequency is in the passband of each channel, we can consider that the filters phase
difference is negligible. Then, the observable time delay between two sensor signals corresponds to the one induced by
the difference τHi − τHj . So, the following expression can be written :

(12) ̂τHi − τHj ≈ arg max
τ

(ryiyj (τ))

where ryiyj (τ) is the crosscorrelation sequence. This information is added to the subspace method in order to carry out
the complete characterization.

So, finding the best localization of the source B∗ leads to a minimisation of the criterion (10) under the constraint :

(13) J ′(B) =

nc
∑

i,j

(τHi (B)− τHj (B))− arg max
τ

(ryiyj(τ))

Let’s note that the constraint J ′(B) is null for B = B∗ in the case where source signal is sinusoidal, but generally J ′(B)
is just an approximation of the matching time delay. Finally, solving the both problem of localization and identification
consist in minimizing the criterion :

(14) B∗ = arg min
B

(H(Kx(B),Ky(B), B)TQH(Kx(B),Ky(B), B) + J ′(B))

The right loacalization B∗ gives the best coefficients Kx(B
∗) and Ky(B

∗). The minimisation of this criterion is made by
the mean of a levenberg-Marquart procedure [3]. We can see that this method needs a great computation time because
(14) is calculated for all the possible source positions, i.e all the point of the networking except the sensors positions.

6 Results

The simulation conditions are :

•
−→
U : (6m/s, 45◦).

• size of monitored area (10km, 10km), h = 500m, k = 500m

• source coordinates : (1500m, 1000m)

• sensors coordinates : C1 : (1500m, 3500m), C2 : (7500m, 6000m), C3 : (5500m, 2500m)

• noise : σ2
b = 2.25

A subarea has been defined thanks to the knowledge of the wind direction and to the hypothesis that the source is
located before the sensors. This subarea permits to reduce the computation time (Figure 2.a).

7 Conclusion

In this contribution we have proposed a method of characterization of a scattering model acting in a monitored area
and including a source. The subspace method permits the identification without any a priori information (spatial
and temporal) on the source. The estimation of the impulse responses of each source-sensors channel is based on the
minimisation of a criterion which takes into account the orthogonality property of the two subspaces and the estimation
of the delays between the sensor signals. The algorithm provides good results between 20dB and 50 dB. Indeed, above
50dB the noise subspace does not bring sufficient information and under 20 dB, the delays estimation is not good.
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Figure 2: Simulation results
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