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Abstract— Asynchronous motors is nowadays the most used in
industrial process. In this paper we describe a new approach to
detect incipient broken rotor bar and mechanical abnormalities.
We use the magnitude of components created in the line current
and the instantaneous power spectra of one stator phase to detect
the presence of these faults in induction motors. We show that
the study of components created by space harmonics in the stator
current allows us to differentiate a broken rotor bar to a load
torque variation. First, we have looked the effects of these faults
with a simulation model. Tanks to this study, fault components
we have to supervise are localized in power spectra. Secondly, a
load torque oscillation and several rotor cage faults were studied
with various load level. Experimental results prove the efficiency
of the proposed method.

Index Terms— Induction motor, Diagnosis, Modulation in-
dexes, Incipient broken rotor bar, Load torque oscillation.

I. INTRODUCTION

In this paper, we proposed a method based on space har-
monics study to differentiate a broken rotor bar to a load torque
variation. The broken rotor bar and load torque oscillation can
be connected to the analysis of the global modulation index
[5]. We estimate the global modulation index corresponding to
the contribution of all faults components present in line current
spectrum. In order to find the frequency and the amplitude of
each component, we use the power spectral density of the
instantaneous power of one stator phase [7] [8]. We show
that using of this signal improves the detection of components
created by the two types of defects [9]. First, we study the
effects of the two faults on the line current with a induction
motor model. This analysis permit to define which are the most
significant components to diagnose the defect. Thereafter, we
carry out experimental tests to validate the suggested method.
The study show that thanks to the components created by space
harmonics, we can differentiate a rotor fault to a mechanical
fault.

II. INDUCTION MOTOR MODEL

Space harmonics are the result of the distribution of the coil
in the stator slots. They directly modify the magnetomotive

force (MMF) of the induction machine. We have introduced
these harmonics in a simulation model by modifying the
leakage inductances of stator circuits and mutual inductances
between stator and rotor circuits. The different calculus for
the evaluation of these inductances and the description of the
simulation model are explained in [4].
The study of a broken rotor bar and a load torque variation
effects on the induction motor model permits to identify
components that we must supervise to detect these type of
faults in the power spectrum of the line current. First, we
create a rotor fault by introducing a broken rotor bar in the
simulation model. This broken bar induces a modification of
the rotor induction (fundamental and space harmonics) what
result in an increase of components harmonics amplitude in
the line current spectrum. The power spectrum of the line
current in this case is show on figure 1(a) in the frequency
band [0 - 100] Hz. As we can see, components appear at
frequencies (1 ± 2ks)fs around the fundamental component
fs [1]. If we study the frequency band [100 - 1000] Hz of
this spectrum (figure 1(b)), additional components appear at
frequencies given by the relation [3] :

fshk
= (x(1 − s) ± (1 + 2η)s) fs (1)

where x = k/p represents the space harmonic order (3, 5, 7,
9, ...), s the slip of the induction motor and η can take values
0, 1, 2, 3, . . .. In this paper, these components will be named
Cshx

.
In the case of a load torque oscillation (we chose a fre-

quency oscillation equal to 2sfs), we can see on figure 2(a)
that components appear at the same frequencies that broken
rotor bar, i.e. (1 ± 2ks)fs. Consequently, if we study only
these components to diagnose the induction motor, we will not
know if we have a rotor fault or a mechanical abnormality. In
this case, the study of space harmonics is essential. Indeed, as
we can show on figure 2(b), the load torque oscillation does
not disturb the components created by these harmonics. We
have not any additional components in this frequency band
because the induction rotor is not modified. Consequently,
the monitoring of space harmonics components allows to



differentiate a broken rotor bar to a load torque oscillation
at 2sfs.

To determine the frequency of these components, the value
of the slip of the induction motor is required. For that, the
relative power spectral density of the instantaneous power of
one stator phase is used. Indeed, we find in this spectrum the
fault components created by a rotor fault or a load torque
oscillation in a frequency band [0 - 100] Hz well-bounded [6]
[7].

III. CALCULATION OF THE SLIP OF THE INDUCTION
MOTOR

Appearance of broken rotor bar or load torque oscillation
at 2sfs induces, in the stator current, additional frequencies
at (1 ± 2ks)fs. These fault created an amplitude modulation
and a phase modulation in the line current. If we look at
figures 1(a) and 2(a), we can see that we do not have the same
amplitude for the component at (1−2s)fs and the component
at (1 + 2s)fs [2]. This difference is caused by the inertia
of the induction motor and by the weak modulation phase
presents in the line current. Consequently, we do not have
an amplitude modulation with a perfectly symmetrical modu-
lation law compared to the carrier frequency : the sidebands
magnitude on the left and on the right are different. Moreover,
the number of components at the left can be different that the
number of components at the right. Consequently, the line
current expression can be written :

is(t) = is0(t) +

Kl∑

k=1

√
2Ismck

2
cos((ωs − kωf )t − ϕ) +

Kr∑
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√
2Ism

′

ck

2
cos((ωs + kωf )t − ϕ) (2)

In this expression, mck
and m

′

ck
represent the modulation

index of the left component k and the modulation index of the
right component k. Terms Kl and Kr represent respectively
the number of components at the left and at the right of the
carrier frequency fs presents in the line current spectrum when
a fault appears. The expression of the instantaneous power of
one phase gives :
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We have, in the instantaneous power spectrum, the presence
of a spectral peak at the modulation frequency ff = ωf/(2π).
The latter, subsequently called a characteristic component,
provides an extra piece of diagnostic information about the
health of the motor. Its amplitude depends on phase angle

ϕ and on modulation indexes mp1
and m

′

p1
. In our case, it

is this component which is used for the calculation of the
slip s. Indeed, with the estimation of the 2sfs frequency, we
will know the speed of the rotor and consequently, we could
estimate the exact frequencies of the fault components in the
line current spectrum. The detection of these components is
easier in the instantaneous power spectrum than in the line
current spectrum because we find them in a frequency band
well-bounded. Indeed, it would be difficult to filter out the fun-
damental component of the stator current without affecting the
sideband component. In opposite, the characteristic component
in the spectrum of instantaneous power can easily be separated
from the DC component by compensation of the latter. The
spectrum of the power provides easier filtering conditions than
that of the stator current [9].

IV. EVALUATION OF LINE CURRENT MODULATION
INDEXES

According to the amplitude modulation theory, if several
sinusoidal signals modulate the same carrier wave, the power
of this wave does not change while the modulating signals
increase the power contained in the sidebands. Since the
modulation index is proportional to the amplitude of the
modulating signal, different modulation indexes correspond to
different modulating signals. The global modulation index mtc

of the line current is defined so that the power of the sidebands
equals the sum of powers of each sideband. Consequently, the
expression of the global modulation index mtc

, by integrating
the terms Kl and Kr becomes:

m2

tc
=

Kl∑

k=1

m2

ck
+

Kr∑

k=1

m
′
2

ck
(4)

Moreover, for each modulation frequency (1 ± 2ks)fs, we
can deduce its modulation index mk by dividing its estimated
amplitude Ask

= mkAc/2 by the amplitude of the carrier
frequency Ac =

√
2Is:

Ask

Ac

=
mkAc

2

1

Ac

=
mk

2
=⇒ mk =

2Ask

Ac

(5)

The same study can be done with space harmonics com-
ponents. If we complete expression (2) to integer these space
harmonics, we obtain the line current expression given in eq.
6. where the term (2x + 1) represents the number of space
harmonics that we want to take into account for the diagnosis
of the induction motor. With this last expression and referring
to eq. (5) , a global modulation index specific to the space
harmonic (2x + 1) can be calculated with the expression:

m2

tsh(2x+1)
=

Kl∑

η=0

m2

sh(2x+1)η
+

Kr∑

η=0

m
′
2

sh(2x+1)η
(7)

Let us note that in this study, the number of space harmonics
considered is equal to 13 (x = 6). We can connect the
detection of a broken rotor bar to the analysis of these
global modulation indexes. In fact, if these indexes increase
with index mtc, we will have a broken rotor bar and not a
load torque oscillation. In the contrary case, we will have a
load torque oscillation and not a broken rotor bar. We have
described the method used to monitor the induction motor.
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V. EXPERIMENTAL RESULTS

The test-bed used in the experimental investigation is a
three-phase, 50 Hz, 2-poles, 3 kW induction motor. Several
rotors cage type with 28 rotor bars could be interchanged.
The Bartlett peridogram with a Hanning’s window is computed
and the power spectral density of instantaneous power and line
current is plotted [10] [11]. The voltage and the line current
measurements are taken for the motor operating at the nominal
rate. For both variables, the sampling frequency is 2 kHz and
each data length is equal to 218 samples. Each spectrum is
calculated with 32768 points (length for the average of the
Bartlett periodogram). Two levels of rotor faults are studied:
a partially broken rotor bar and one broken rotor bar. Two
resistor banks serve as a load for the generator. A first bank
is used as a fixed load, while the second one can be switched
on and off by a power electronic switch in order to introduce
mechanical abnormalities (load torque oscillation)[7].

A. Detection of a rotor fault

To make a decision about the state of the induction motor,
we define a reference witch is obtain with an healthy motor.
Figures 3(a) and 4(a) give us the power spectral density of the
line current and instantaneous power of one stator phase in
the case of a healthy operation with a constant and nominal
load torque. We can observed the presence of a component
at frequency 2sfs in the instantaneous power spectrum and
components at (1 ± 2ks)fs in the line current spectrum.
The presence of these components means that we have a
modulation amplitude in the stator current witch is the result
of a natural asymmetry of the rotor. Indeed, like the cage of
the asynchronous motors is not perfect, there exist on any type
of induction machines, a backward rotating field in the air gap
at frequency −gfs. This is this imperfection which induces,
in the line current and instantaneous power, the appearance
of these modulations. In the case of our healthy motor, they
are these amplitude modulations and the global modulation
index associated which will be used as the reference. For
each acquisition, the global modulation index is calculated and
compared with the reference to evaluate the state of the rotor
cage.

As we shown in section III, when a broken rotor bar occurs,
this asymmetry increases and several sidebands appear at
frequencies 2ksfs in the instantaneous power spectrum and
(1 ± 2ks)fs in the line current spectrum (figures 3(b) and
4(b)). The first frequency easily detectable is the 2sfs one in
the instantaneous power spectrum because it is the component
with the highest magnitude in the considered band Blf =

[0.2−35] Hz. Then, we search all maxima that magnitude are
at frequencies 2ksfs with a greater accuracy (the tolerance
is below 1%) and above a threshold defined as the mean of
the spectrum in the band Blf . This information gives us the
value of the slip s and the number of components Kpn. The
terms Kl and Kr in eq. (6) can be replaced by the value
of Kpn because we have chosen to detect an equal number of
components on the right and on the left of the carrier frequency
fs of the line current spectrum. With the slip s, we calculate
the frequencies (1 ± 2ks)fs and (x(1 − s) ± (1 + 2η)s) fs of
the fault components to evaluate their amplitudes. Then, we
estimate the modulation index of each modulation frequency
in the same way as the eq. (5). Finally, with eq. (4) and eq.
(7), we give global modulation indexes on the line current mtc

and mtsh(2x+1)
.

The value of global modulation indexes mtc and mtsh(2x+1)

in the case of a healthy rotor, a partially broken rotor bar
and one broken rotor bar at different load level are given in
Table I. Table I gives the state of the motor (for example,
we note H-L100 the case of a healthy rotor with 100% load,
05b-L75 for a partially broken rotor bar with 75% load and
1b-L25 for a broken rotor bar with 25% load), the value of
the 2sfs frequency detected, the speed of the rotor calculated
with this frequency, the number of component Kpn detected
in the frequency band [0.2 - 35] Hz of the instantaneous power
spectrum, the value of the global modulation index mtc of the
line current and its increasing in comparison with the healthy
operation A(mtc). As we can see, the global modulation index
mtc increases when a incipient rotor fault occurs in the rotor
cage (partially broken rotor bar). In the case of one broken
rotor bar, the increasing is very important in comparison with
the healthy operation of the induction motor. We note an
augmentation even of a load torque equal to 0%. Moreover,
we can see that for some cases, the number of components
Kpn increases too.

If we look at global modulation indexes of space harmonics,
we can see that they also increase when a partially or com-
pletely broken rotor bar appears. Among all these indexes, we
note that indexes of space harmonics 5 and 7 increase the
most significantly (figures 5(a) and 5(b)). The others indexes
like mtsh(3)

or mtsh(9)
are not modified because they depend

on the winding factor of the induction motor analyzed. In our
case, this winding factor is equal to 2/3. This value limit the
effect of harmonics 3k (k is an integer) in the magnetomotive
force of the air gap. It is for this reason that these indexes do
not increase when the rotor cage is failing.

The global modulation indexes of the space harmonics



when the load torque level is equal to 0% were not studied
because the faults components detected were not the good
components. This error is due to the low value of the slip.
With the use of a tolerance of 1%, frequencies bands where the
space harmonics frequencies are evaluated (eq. 1) are overlaps.
Consequently, the choice of the maximum component in the
frequencies bands considered is identical for the frequency
(5(1 − s) − s) fs and (5(1 − s) + s) fs (for the case where
η = 0). Consequently, we find bad values for global modula-
tion indexes mtsh(2k+1)

.
From this analysis, we can conclude that the monitoring of

these terms (Kpn, mtc, mtsh(5)
and mtsh(7)

) allow to know if
the induction motor operate with a faulty cage. Consequently,
for the broken rotor bar diagnosis, we can establish a criterion
which take into account this information like in [5].

B. Detection of a load torque oscillation

The load torque variation can have an unspecified frequency.
The torque ripple can be synchronous or asynchronous with
the position of the shaft. In practice, synchronous torque
oscillation is typical for such mechanical abnormalities as rotor
imbalance and eccentricity and, in an extreme case, a rub
between the rotor and the stator. Consequently, the frequency
of the load torque oscillation can be equal to (1 − g)fs if a
resistance appears, for example, at each rotation of the induc-
tion motor. If the synchronous speed of the induction motor
is equal to 3000 rpm, this frequency will be approximatively
equal to 46 Hz and if the synchronous speed of the motor
is equal to 1500 rpm, this frequency will be equal to 23 Hz.
Asynchronous torque oscillation, on the other hand, may result
from abnormalities in a load that is geared to the motor, or
from torsional vibration of the rotor shaft. In this paper, we
study the case of a load torque frequency equal to 2sfs because
it induces, in the line current spectrum (frequency band [0 -
100] Hz), the same components that a broken rotor bar (figure
4(c)).

To introduce a load torque oscillation, we switch the second
resistor bank on and off with a frequency of 6.5 Hz. This
frequency corresponds to a frequency of 2sfs when the
motor operate with its nominal torque (we chose a oscillation
frequency equal to the 2sfs frequency detected in the case of
a healthy rotor for each load level studied). The value of the
second resistor bank was chosen to have an amplitude of the
component at (1+2s)fs in the line current spectrum identical
to that obtained in the case of a broken rotor bar (see figures
4(b) and 4(c)).

In this configuration, we find, in the low frequency band of
the instantaneous power, components at frequencies 2ksfs as
we can see on figure 3(c). In this case, the amplitude of the
component at 2sfs is largest, which makes it possible to use
the same method developed in section II for the calculation of
the slip of the induction motor. With this value, we calculate
frequencies (1 ± 2ks)fs and (x(1 − s) ± (1 + 2η)s) fs to
evaluate global modulation indexes mtc and mtsh(2x+1)

.
Results in this configuration are referred in Table I (lines

noted LTV: Load Torque Variation). As we can see, the
global modulation index mtc and the number of components

Kpn increase when a load torque oscillation is introduce by
the second resistor bank. However, we can see that global
modulation indexes of space harmonics are not disrupted by
this fault. Indeed, the augmentation of these indexes is much
lower than in the case of a fault cage (figure 5(c)). This result
show us that the study of space harmonics is essential to
differentiate a broken rotor bar to a load torque oscillation
at 2sfs.

VI. CONCLUSION

The instantaneous power spectrum gives additional com-
ponents to the modulation frequency 2ksfs. These are the
result of the disturbance to the induction motor. The diagnosis
based on the global modulation index method applied to the
line current signal provides relevant results for the detection
of broken rotor bars and load torque oscillation. We have
demonstrated that the study of components created by space
harmonics allow to differentiate a broken bar to a load torque
oscillation when the latter has a frequency equal to 2sfs. The
experimental results show the effectiveness of the technique,
even if the motor operates under a low load. The monitoring
of the global modulation index mtc enabled us to detect a
partially broken bar in the rotor cage. Moreover, we showed
that the measurement of the instantaneous power of a stator
phase can be used to calculate the slip of the asynchronous
machine. The frequencies of the characteristic components
(load torque variation or broken rotor bar) are clear from the
supply frequency, which enables the detection to be easily
highlighted.
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TABLE I
GLOBAL MODULATION INDEX mtc OF THE LINE CURRENT.

State of Frequency Speed Kpn mtc A(mtc) mtsh5
A(mtsh5

) mtsh7
A(mtsh7

)
the motor 2sfs

H-L100 6,53 2803 2 0,0021 0,0014 0,0011
05b-L100 5,98 2820 3 0,0053 +153% 0,0032 +128% 0,0016 +45%
1b-L100 6,67 2799 3 0,0408 +1843% 0,0236 +1585% 0,0102 +827%
LTV-L100 6,41 2807 5 0,0239 +1038% 0,0017 +21% 0,0013 +23%
H-L75 4,94 2851 3 0,0024 0,0013 0,0011
05b-L75 4,27 2872 3 0,0070 +192% 0,0041 +215% 0,0021 +91%
1b-L75 4,64 2860 4 0,0442 +1742% 0,0314 +2315% 0,0138 +1154%
LTV-L75 4,94 2851 5 0,0277 +1054% 0,0021 +61% 0,0015 +36%
H-L50 3,17 2904 2 0,0018 0,0015 0,0015
05b-L50 2,87 2913 3 0,0038 +111% 0,0039 +160% 0,0017 +13%
1b-L50 2,99 2910 4 0,0350 +1844% 0,0248 +1553% 0,0103 +586%
LTV-L50 3,05 2908 9 0,0380 +2011% 0,0021 +40% 0,0017 +13%
H-L25 1,59 2952 2 0,0048 0,0013 0,0016
05b-L25 1,47 2956 2 0,0100 +108% 0,0039 +20% 0,0014 -12%
1b-L25 1,53 2954 3 0,0281 +485% 0,0204 +1470% 0,0093 +481%
LTV-L25 1,59 2952 8 0,0359 +648% 0,0028 +115% 0,0028 +75%
H-L0 0,30 2990 1 0,0046 Not detected
05b-L0 0,27 2993 1 0,0069 +50% Not detected
1b-L0 0,27 2993 2 0,0065 +41% Not detected
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Fig. 1. Line current spectrum with one broken rotor bar in the frequency band: (a) [0 - 100] Hz, (b) [100 - 1000] Hz (Simulation results).
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Fig. 2. Line current spectrum with a load torque variation: (a) in the frequency band [0 - 100] Hz, (b) in the frequency band [100 - 1000] Hz (Simulation
results).



0 5 10 15 20 25 30 35
−100

−90

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (d

B
)

PSfrag replacements
2ksfs

2sfs

Threshold

(a) Healthy rotor

0 5 10 15 20 25 30 35
−100

−90

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (d

B
)

PSfrag replacements

2ksfs

2sfs

Threshold

(b) One broken rotor bar
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Fig. 3. Instantaneous power spectrum in the frequency band [0-35] Hz (Experimental results).
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10 20 30 40 50 60 70 80 90
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (d

B
)

PSfrag replacements
2ksfs

2sfs

Threshold

(1 − 2kg)fs (1 + 2kg)fs
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Fig. 4. Line current spectrum in the frequency band [10-90] Hz (Experimental results).
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(c) Load torque variation

Fig. 5. Line current spectrum in the frequency band [200-280] Hz (Space harmonic 5) (Experimental results).


